The basic unit used in the computer world is the byte (a.k.a octet), a byte (or octet) has 8 bits (a.k.a binary digits). Most modern systems use multiples of a byte, thus, a 16-bit system is comprised of 2 bytes (2 x 8 = 16), a 32-bit system has 4 bytes (4 x 8 = 32) and a 64-bit system has 8 bytes (8 x 8 = 64). The term word, as in the description 32-bit word has largely disappeared from the technical lexicon.
The contents of any byte, for instance, in a memory location or on a network, can be expressed in many numbering systems. The most commonly used numbering systems are Decimal, Hexadecimal and Binary:
Numbering System | Base | Range | Notes |
Decimal | base 10 | 0 - 1,2,3... | The most common numbering system - dollars, metric etc. A byte (8 bits) has 256 possible values in the range 0 - 255 |
Binary | base 2 | 0 - 1 | The basic level at which the electronic circuitry in a computer works - a single bit. |
Hexadecimal | base 16 | 0-9, A-F | Each Hexadecimal character represents 4 bits (0 - 15 decimal) which is called a nibble (a small byte - honest!). A byte (or octet) is 8 bits so is always represented by 2 Hex characters in the range 00 to FF. |
Historical Note: Once upon a time, when the world, and even the author of this page, was young, computers were built with 12-bit, 24-bit and even 36-bit words (it made some sense then, just looks strange today). Each of these word sizes is divisible by 3 and used an octal (base 8) numbering system. Each 3 bit element contained 8 values in the range 0 to 7. Thus, a memory location with the 12-bit binary value of 000.001.100.111 would be written in octal as 0147.
When working with binary each bit within a byte (octet) may need to be identified using a technique called bit numbering. Bit numbering can be very confusing with various standard bodies adopting different conventions. The following are all valid, and used, bit numbering conventions for describing an 8 bit byte (an octet).
Memory contents | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Bit numbering conventions | ||||||||
Left to right base 0 (IETF) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Left to right base 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Right to left base 1 (ITU) | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
Power of 2 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Always check what convention is used on any specification. We have bowed to the inevitable and use the Left to right base 0 (IETF) standard since, because of the Internet, it is widely used and, hopefully, equally widely understood. The IETF's rationale for this standard is that it also represents unambiguously what is called network order, that is, bit 0 goes onto a network first, bit 1 second and so on. Bits also tend to come off the network in the same order they went on. Use of network order is necessary since the internal (machine) representation of data can vary enormously (all that big-endian, little-endian nonsense) but when data is stuffed onto a network it must be in a consistent order that can be used by any system, irrespective of its internal representation, that wants to use the data.
Finally, when working with binary you will frequently come accross the terms Most Significant Bit(s) (MSB) and Least Significant Bit(s) (LSB). The MSB is always on the LEFT and the LSB on the RIGHT. Thus, using IETF bit numbering the MSB is bit 0 and the LSB is bit 7, whereas using ITU bit numbering the MSB is bit 8 and the LSB is bit 1. Crystal clear, right?
IPv4 Decimal to Hex Conversion
Decimal | Hexadecimal | Binary | Decimal | Hexadecimal | Binary |
0 | 00 | 0000 0000 | 128 | 80 | 1000 0000 |
1 | 01 | 0000 0001 | 129 | 81 | 1000 0001 |
2 | 02 | 0000 0010 | 130 | 82 | 1000 0010 |
3 | 03 | 0000 0011 | 131 | 83 | 1000 0011 |
4 | 04 | 0000 0100 | 132 | 84 | 1000 0100 |
5 | 05 | 0000 0101 | 133 | 85 | 1000 0101 |
6 | 06 | 0000 0110 | 134 | 86 | 1000 0110 |
7 | 07 | 0000 0111 | 135 | 87 | 1000 0111 |
8 | 08 | 0000 1000 | 136 | 88 | 1000 1000 |
9 | 09 | 0000 1001 | 137 | 89 | 1000 1001 |
10 | 0A | 0000 1010 | 138 | 8A | 1000 1010 |
11 | 0B | 0000 1011 | 139 | 8B | 1000 1011 |
12 | 0C | 0000 1100 | 140 | 8C | 1000 1100 |
13 | 0D | 0000 1101 | 141 | 8D | 1000 1101 |
14 | 0E | 0000 1110 | 142 | 8E | 1000 1110 |
15 | 0F | 0000 1111 | 143 | 8F | 1000 1111 |
16 | 10 | 0001 0000 | 144 | 90 | 1001 0000 |
17 | 11 | 0001 0001 | 145 | 91 | 1001 0001 |
18 | 12 | 0001 0010 | 146 | 92 | 1001 0010 |
19 | 13 | 0001 0011 | 147 | 93 | 1001 0011 |
20 | 14 | 0001 0100 | 148 | 94 | 1001 0100 |
21 | 15 | 0001 0101 | 149 | 95 | 1001 0101 |
22 | 16 | 0001 0110 | 150 | 96 | 1001 0110 |
23 | 17 | 0001 0111 | 151 | 97 | 1001 0111 |
24 | 18 | 0001 1000 | 152 | 98 | 1001 1000 |
25 | 19 | 0001 1001 | 153 | 99 | 1001 1001 |
26 | 1A | 0001 1010 | 154 | 9A | 1001 1010 |
27 | 1B | 0001 1011 | 155 | 9B | 1001 1011 |
28 | 1C | 0001 1100 | 156 | 9C | 1001 1100 |
29 | 1D | 0001 1101 | 157 | 9D | 1001 1101 |
30 | 1E | 0001 1110 | 158 | 9E | 1001 1110 |
31 | 1F | 0001 1111 | 159 | 9F | 1001 1111 |
32 | 20 | 0010 0000 | 160 | A0 | 1010 0000 |
33 | 21 | 0010 0001 | 161 | A1 | 1010 0001 |
34 | 22 | 0010 0010 | 162 | A2 | 1010 0010 |
35 | 23 | 0010 0011 | 163 | A3 | 1010 0011 |
36 | 24 | 0010 0100 | 164 | A4 | 1010 0100 |
37 | 25 | 0010 0101 | 165 | A5 | 1010 0101 |
38 | 26 | 0010 0110 | 166 | A6 | 1010 0110 |
39 | 27 | 0010 0111 | 167 | A7 | 1010 0111 |
40 | 28 | 0010 1000 | 168 | A8 | 1010 1000 |
41 | 29 | 0010 1001 | 169 | A9 | 1010 1001 |
42 | 2A | 0010 1010 | 170 | AA | 1010 1010 |
43 | 2B | 0010 1011 | 171 | AB | 1010 1011 |
44 | 2C | 0010 1100 | 172 | AC | 1010 1100 |
45 | 2D | 0010 1101 | 173 | AD | 1010 1101 |
46 | 2E | 0010 1110 | 174 | AE | 1010 1110 |
47 | 2F | 0010 1111 | 175 | AF | 1010 1111 |
48 | 30 | 0011 0000 | 176 | B0 | 1011 0000 |
49 | 31 | 0011 0001 | 177 | B1 | 1011 0001 |
50 | 32 | 0011 0010 | 178 | B2 | 1011 0010 |
51 | 33 | 0011 0011 | 179 | B3 | 1011 0011 |
52 | 34 | 0011 0100 | 180 | B4 | 1011 0100 |
53 | 35 | 0011 0101 | 181 | B5 | 1011 0101 |
54 | 36 | 0011 0110 | 182 | B6 | 1011 0110 |
55 | 37 | 0011 0111 | 183 | B7 | 1011 0111 |
56 | 38 | 0011 1000 | 184 | B8 | 1011 1000 |
57 | 39 | 0011 1001 | 185 | B9 | 1011 1001 |
58 | 3A | 0011 1010 | 186 | BA | 1011 1010 |
59 | 3B | 0011 1011 | 187 | BB | 1011 1011 |
60 | 3C | 0011 1100 | 188 | BC | 1011 1100 |
61 | 3D | 0011 1101 | 189 | BD | 1011 1101 |
62 | 3E | 0011 1110 | 190 | BE | 1011 1110 |
63 | 3F | 0011 1111 | 191 | BF | 1011 1111 |
64 | 40 | 0100 0000 | 192 | C0 | 1100 0000 |
65 | 41 | 0100 0001 | 193 | C1 | 1100 0001 |
66 | 42 | 0100 0010 | 194 | C2 | 1100 0010 |
67 | 43 | 0100 0011 | 195 | C3 | 1100 0011 |
68 | 44 | 0100 0100 | 196 | C4 | 1100 0100 |
69 | 45 | 0100 0101 | 197 | C5 | 1100 0101 |
70 | 46 | 0100 0110 | 198 | C6 | 1100 0110 |
71 | 47 | 0100 0111 | 199 | C7 | 1100 0111 |
72 | 48 | 0100 1000 | 200 | C8 | 1100 1000 |
73 | 49 | 0100 1001 | 201 | C9 | 1100 1001 |
74 | 4A | 0100 1010 | 202 | CA | 1100 1010 |
75 | 4B | 0100 1011 | 203 | CB | 1100 1011 |
76 | 4C | 0100 1100 | 204 | CC | 1100 1100 |
77 | 4D | 0100 1101 | 205 | CD | 1100 1101 |
78 | 4E | 0100 1110 | 206 | CE | 1100 1110 |
79 | 4F | 0100 1111 | 207 | CF | 1100 1111 |
80 | 50 | 0101 0000 | 208 | D0 | 1101 0000 |
81 | 51 | 0101 0001 | 209 | D1 | 1101 0001 |
82 | 52 | 0101 0010 | 210 | D2 | 1101 0010 |
83 | 53 | 0101 0011 | 211 | D3 | 1101 0011 |
84 | 54 | 0101 0100 | 212 | D4 | 1101 0100 |
85 | 55 | 0101 0101 | 213 | D5 | 1101 0101 |
86 | 56 | 0101 0110 | 214 | D6 | 1101 0110 |
87 | 57 | 0101 0111 | 215 | D7 | 1101 0111 |
88 | 58 | 0101 1000 | 216 | D8 | 1101 1000 |
89 | 59 | 0101 1001 | 217 | D9 | 1101 1001 |
90 | 5A | 0101 1010 | 218 | DA | 1101 1010 |
91 | 5B | 0100 1011 | 219 | DB | 1101 1011 |
92 | 5C | 0101 1100 | 220 | DC | 1101 1100 |
93 | 5D | 0101 1101 | 221 | DD | 1101 1101 |
94 | 5E | 0101 1110 | 222 | DE | 1101 1110 |
95 | 5F | 0101 1111 | 223 | DF | 1101 1111 |
96 | 60 | 0110 0000 | 224 | E0 | 1110 0000 |
97 | 61 | 0110 0001 | 225 | E1 | 1110 0001 |
98 | 62 | 0110 0010 | 226 | E2 | 1110 0010 |
99 | 63 | 0110 0011 | 227 | E3 | 1110 0011 |
100 | 64 | 0110 0100 | 228 | E4 | 1110 0100 |
101 | 65 | 0110 0101 | 229 | E5 | 1110 0101 |
102 | 66 | 0110 0110 | 230 | E6 | 1110 0110 |
103 | 67 | 1110 0111 | 231 | E7 | 1110 0111 |
104 | 68 | 0110 1000 | 232 | E8 | 1110 1000 |
105 | 69 | 0110 1001 | 233 | E9 | 1110 1001 |
106 | 6A | 0110 1010 | 234 | EA | 1110 1010 |
107 | 6B | 0110 1011 | 235 | EB | 1110 1011 |
108 | 6C | 0110 1100 | 236 | EC | 1110 1100 |
109 | 6D | 0110 1101 | 237 | ED | 1110 1101 |
110 | 6E | 0110 1110 | 238 | EE | 1110 1110 |
111 | 6F | 0110 1111 | 239 | EF | 1110 1111 |
112 | 70 | 0111 0000 | 240 | F0 | 1111 0000 |
113 | 71 | 0111 0001 | 241 | F1 | 1111 0001 |
114 | 72 | 0111 0010 | 242 | F2 | 1111 0010 |
115 | 73 | 0111 0011 | 243 | F3 | 1111 0011 |
116 | 74 | 0111 0100 | 244 | F4 | 1111 0100 |
117 | 75 | 0111 0101 | 245 | F5 | 1111 0101 |
118 | 76 | 0111 0110 | 246 | F6 | 1111 0110 |
119 | 77 | 1111 0111 | 247 | F7 | 1111 0111 |
120 | 78 | 0111 1000 | 248 | F8 | 1111 1000 |
121 | 79 | 0111 1001 | 249 | F9 | 1111 1001 |
122 | 7A | 0111 1010 | 250 | FA | 1111 1010 |
123 | 7B | 0111 1011 | 251 | FB | 1111 1011 |
124 | 7C | 0111 1100 | 252 | FC | 1111 1100 |
125 | 7D | 0111 1101 | 253 | FD | 1111 1101 |
126 | 7E | 0111 1110 | 254 | FE | 1111 1110 |
127 | 7F | 0111 1111 | 255 | FF | 1111 1111 |
To convert a dotted decimal IPv4 address to hexadecimal, take each dotted decimal value and convert it using a hex calculator (standard windows calculator in scientific or prgrammer mode will do the job). This will yield:
IP address in dotted decimal = 192.168.0.5 Decimal 192 = Hexadecimal = C0 Decimal 168 = Hexadecimal = A8 Decimal 0 = Hexadecimal = 00 Decimal 5 = Hexadecimal = 05 IP Address in dotted hex = C0.A8.00.05
Problems, comments, suggestions, corrections (including broken links) or something to add? Please take the time from a busy life to 'mail us' (at top of screen), the webmaster (below) or info-support at zytrax. You will have a warm inner glow for the rest of the day.
Tech Stuff
If you are happy it's OK - but your browser is giving a less than optimal experience on our site. You could, at no charge, upgrade to a W3C standards compliant browser such as Firefox
Search
Share
Page
Standards
ISO (International)
IEC (International)
ANSI (US)
DIN (Germany)
ETSI (EU)
BSI (UK)
AFNOR (France)
Telecom
TIA (US)
ECIA (US)
ITU (International)
IEEE (US)
ETSI (EU)
OFCOM (UK)
Internet
Electronics
Site
Copyright © 1994 - 2024 ZyTrax, Inc. All rights reserved. Legal and Privacy |
site by zytrax hosted by javapipe.com |
web-master at zytrax Page modified: May 24 2023. |